
Netbox (or other CMDB)
- Server service tags
- Switch service tags

Each should be mapped to some predefined Ansible role

Server Ansible Inventory
(Jinja2 Template – populate with facts from
netbox)

all:
 hosts:
 List of all servers in netbox
 children:
 splunk:
 hosts:
 LIST OF SPLUNK SERVERS
 roles:
 <SET OF ROLES FOR SPLUNK>
 rpmrepos:
 hosts:
 LIST OF RPM REPOS
 roles:
 ROLES FOR RPM REPOS
 <repeat for whatever roles you want>

Playbooks for
all servers

Role Playbooks
for splunk

Role Playbooks
for splunk

Network Ansible Inventory
(Jinja2 Template – populate with facts from
netbox)

all:
 hosts:
 List of all switches in netbox
 children:
 spine:
 hosts:
 LIST OF SPINE SWITCHES
 roles:
 <SET OF ROLES FOR SPINE>
 leaf:
 hosts:
 LIST OF LEAF SWITCHES
 roles:
 ROLES FOR LEAF SWITCHES
 <repeat for whatever roles you want>

Role Playbooks
for all switches

Role Playbooks
for spine

Role Playbooks
for leaf

Note: Ansible called from Foreman

There is plenty of room for preference
here. For example, you could instead use
embedded Ruby templates on Ansible to
generate playbooks and then use
Foreman to run them. I prefer to use
Jinja2 templates in a separate process to
accomplish this.

Foreman

Trigger Tasks

See OME diagram for how Ansible works
with OME.

Foreman Gitlab

Ansible Switch Infrastructure

Trigger Tasks

Push Configs

Backup configs

Push version controlled code

Server Infrastructer

Push Configs

Backup configs

 Fork repository
 Create a feature branch derived from a ticket tracking task
 Perform development
 Squash all dev commits into a single commit with a descriptive

commit message (use more than one commit when it logically
makes sense to do so)

 Rebase feature branch onto current main branch (this may
require a force push)

 Pull request feature branch with single commit
 Review pull request and accept into main branch

Image Server DNS/DHCP Server HTTP Server

1. DHCP request/response

New Switch Device

3. ONIE looks for DNS name onie-server/onie-installer

4. Respond with onie-installer image

5. Switch installs OS
10. ZTP runs
11. Ansible runs with any additional tasks

7. Requests ZTP file location

6. DHCP request
Response with option 67 pointing to config JSON

8. Returns ZTP file location

8. Requests ZTP file

This can be done a number of ways but I generally use Ansible for
this. For example, one strategy is to use Ansible to create soft links
for ONIE using the switch’s model number if you have different
operating systems you want to install. Ex: http://onie-server/onie-
installer-x86_64-dellemc_z9264f_c3538-r0.

To control ZTP on a per switch basis it is best to use dynamic content
with custom HTTP headers. Alternatively you can use dynamic URL.
All SONiC ZTP requests include additional HTTP headers including
product name, serial number, base mac address, and SONiC version.
You can then use this information server side to select a specific ZTP
config to send.

Ansible Server

ZTP config
Updates

Dell OpenManage Enterprise has a very useful autodeploy
feature. As soon as a server is onboarded into OME it will have
the autodeploy configuration applied to it which can include
applying all desired BIOS templates and then mounting and
booting from some target ISO after which further Ansible roles
can run.

Alternatively you could use Foreman for everything however
keep in mind that the majority of Foreman functionality would
require rewrites when BMO is introduced.

OpenManage Enterprise

Service tags

SMB/NFS Server with boot ISO

Ansible Server

Import into Netbox

Trigger job to:
1. Update autodeploy

2. Trigger an onboarding job

Pull ISO and boot

Netbox (or other CMDB) Foreman

Pull server info into templates

Update Ansible playbooks

Once onboard is complete autodeploy kicks off
mounts the boot ISO and then installs the OS

OpenManage EnterpriseHTTP Server w/Repository
(cold also use SMB)

Dell Repository Manager
(Has access to Internet)

Servers

Sneakernet or other method

Selected firmware for all
target servers Output to file

Ansible Server

1. Scheduled job
to update triggers2. OME pulls firmware

3. Push reboot staged updates

Dell repository manager (DRM) provides a UI which allows you
to select which types of servers you have in your inventory.
After you select the desired servers for a given repository you
download all firmware from Dell’s online catalog. After DRM
downloads the firmware you can then export the repository to a
target location. The repository is an XML file defining the
firmware available along with an organized file structure.

If the target is an offline environment you can burn this to a CD
and move it to a target webserver in the offline environment.
From there, OpenManage Enterprise can then point at the web
server and pull from it to update the machines.

For automation you can use Dell’s OME Ansible Modules
https://www.dell.com/support/kbdoc/en-us/000177308/dell-
emc-openmanage-ansible-modules.

Foreman Server
(optional – use Foreman to

trigger the job)

BMO

Servers

Deploy images
Update firmware

Switch Infrastructure

Deploy images
Update firmware

Blueprints defining the type of
server (I expect this to more
or less replace a lot of the
functionality we see in Ansible
roles in my current design)

I expect that BMO will more or less completely replace Foreman moving forward which is one of the reasons I would shy
away from it in this initial design. I have also deliberately not put much in the way of visualization because I expect BMO to
take care of all that. It is going to be the thing that gives you that “central pane of glass”.

A few things off the cuff to expect:

 Firmware management would migrate from OME to BMO
 Write API calls exactly like you would for Foreman for all the same things
 Move integration for autodeploy from OME or other suite to BMO
 Rebuild Ansible to be called from BMO
 Create alerts in BMO

Servers w/telemetry Splunk Ingest Node

SSE client
(receives events
unidirectional) Redfishread (optional) ActiveMQ splunkpump

Redfishread

Redfishread

Redfishread

(optional) ActiveMQ

(optional) ActiveMQ

(optional) ActiveMQ

splunkpump

splunkpump

splunkpump

1. Begin by running the appropriate docker compose file. This will start a number of containers detailed below
2. Runs the container telemetry-receiver. This is going to set up all the services required to get the data from
 iDRAC and into the messaging queue.
 1. Runs idrac-telemetry-receiver.sh inside the container
 1. There are three ways to input configuration variables into the setup and idrac-telemetry-receiver.sh
 provides provisions for all three:
 1. ConfigUI which provides a simple user interface for controlling config variables
 2. DBdiscauth allows users to configure variables via mysql
 3. simpledisc/simpleauth have file based source identification through the file config.ini
 2. idrac-telemetry-receiver.sh then runs all required go files.
 1. dbdiscauth.go - Runs a mysql DB where users can control the pipeline's configuration variables
 2. configui.go - Runs a lightweight GUI on port 8082 (by default) which allows you to change the configuration
 parameters of the system (TODO - where does this write to?)
 3. redfishread.go - Sets up an SSE event listener which receives events from the iDRAC and also creates the
 queue in ActiveMQ. The topic name is databus. This is defined in databus.go by the constant `CommandQueue`
 4. (optional) simpleauth.go/simpledisc.go - Allows the user to input config variables through the config.ini file
3. Runs mysqldb container. mysql provides a mechanism for persisting user settings via a permanent volume mount
4. Runs activemq container - redfishread will pass events from itself to activemq
5. Runs desired database container (elastic/influxdb/prometheus/etc)
6. All networking between the various containers is accomplished with a docker backend network

